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Introduction  

Many investigations have been carried out on multi-species 
ecological systems comprising of food chains of variable lengths 

[19-

21]
.  

Review of Literature 

The underlying nonlinear equations have complex 
dynamical behavior: Limit cycle, quasi-periodic behavior and chaos. 
Three species food web systems are classified into two broad 
categories: (i) one prey and two predators systems (ii) two prey and 
one predator systems.  The dynamics may further include different 
types of interactions between the two preys or predators as the case 
may be. The first category of systems has been investigated by 

[1. 2, 

4, 5, 6, 7, 9, 15-18, 19, 21]
. The chaos is not frequently observed and the 

models reveal quasi periodic nature of the solution 
[4]

. Due to indirect 
competition between two predator species, one or more species 
may undergo extinction. The study of coexistence becomes more 
important in such food webs. Due to availability of alternate prey, the 
chances of coexistence are enhanced. The persistence of the 
species has been investigated 

[4]
. Rich dynamical behavior including 

chaos has been observed in these models. A two preys and a 
predator model with modified Leslie Gower type dynamics has been 
considered 

[4]
. Investigations have been carried out with a constraint 

on model parameters.  
Aim of the Study 

This paper is devoted to a food web comprising of two logistically 
growing preys and a predator. Modified Leslie-Gower type dynamics is 
considered. The simplifying assumption of 

[14]
 is relaxed and the predator 

takes food from both the prey species but not necessarily in the same 
proportion.  
The Mathematical Model 

Consider two prey one predator food web system. Two prey 
species are assumed to grow logistically. The predator dynamics is 
assumed to be of modified Leslie- Gower type.  The Mathematical model is 
given by the following non-linear system of equations 

[3,10, 11, 20]
: 

Abstract 
The dynamics of food web consisting of two logistic preys and a 

predator is investigated. Modified Leslie-Gower type dynamics is 
considered for the predator. The model is analyzed mathematically. 
Analysis of nonzero positive equilibrium gives conditions for persistence. 
Global behavior is simulated numerically for biologically feasible choice 
of parameters. The persistence in the form of local and global stability is 
investigated.  
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(1 ) (1)
1

1
(1 )

A X XdX X
r X

dt K B X B X

A X XdX X
r X

dt K B X B X

dX
r X

dt S S X S X

  
 

  
 

 
 

2,1,0  iX i  represent the population 

density of two preys and 03 X  is the population 

density of the predator. The constants  

, and ,,, iiiii SBArK are model 

parameters assuming only positive values. In the 
model, the third equation is written according to the 
Leslie- Gower scheme in which the conventional 
carrying capacity term is being replaced by the 
renewable resources for the predator as

2211 XSXS  . Due to availability of more food (in 

the form of second prey species) the predator is 

benefited. The additional constant 3S  normalizes the 

residual reductions in the predator population in case 

of severe scarcity of food. Further, the square term 
signifies the fact that mating frequency is proportional 
to the number of males as well as that of females. The 
similar dynamics for the predator was considered in [ ] 
with the simplifying assumption that the predator 
takes proportional food from the two prey species. 
Accordingly, it was assumed that

 /   = constant, i  1,2 i iB S  . No such 

assumption is made in the present analysis. Although 
the two prey species are not directly interacting with 
each other, but the growth of both the prey species 
increases due to presence of other species as the 
predator is taking food from the two preys. The 
following dimensionless variables/ and parameters 
are introduced: 

 

1 3 3 1 1 1 1 2 1 1 3 2 2 4 2 1

5 2 1 1 6 3 1 1 7 3 8 1 2 9 2 3 1 1 3 1 2 2 3 2

, / , / , / , , , / ,

/ , / , 1/ , , , / , /

i i it rT y X K y X K w A r w B K w B K w r r

w A K r w r K r w S w w w w S S B S S B   

      

        

The system (1) is transformed to the following non-dimensional form: 

1 31
1 1 1 1 1 2 3

2 1 3 2

5 32
2 2 4 2 2 1 2 3

3 2 2 1

2 23 7 7
6 3 6 3 3

8 1 9 2 1 2 1 2 3 2

(1- - ) ( , , )
1

[(1- ) - ] ( , , ) (2)
1

(1- ) (1- )
1 1

w ydy
y y y f y y y

dt w y w y

w ydy
y y w y f y y y                                             

dt w y w y

dy w w
w y w y y f

dt w y w y w y w y 

 
 

 
 

  
   

3 1 2 3( , , )y y y

0, 1,2,3,4,5,6,7; 0, 1,2,3;i iw i y i    1 2  .

Mathematical Analysis  

            The system can be splitted into two disconnected sub webs:  
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 Lemma 4.1  

Consider the domain 1 1 3 1 1 3{( , ) :0 1, 0 }D y y  y y  y      and 

2 2 3 2 2 3{( , ) :0 1, 0 },D y y  y y  y     he sub system (3A) is Kolmogorov [ ] in the domain D1 and the 

subsystem (3B) is Kolmogorov in the domain D2 under the following conditions:        

 2

7 1 2 1 7 1 2 1 7

2

7 2 3 2 7 2 3 2 7

/(1 ) 1 /(1 ) 4

/(1 ) 1 /(1 ) respectively (4 )

w w y w w y w A

w w y w w y w B

 

 

    

    

               
In fact, the following rather weak condition is considered throughout our subsequent discussion 

             
1)1/( 32217  www                                          (5) 

Three non-negative equilibrium points for the Kolmogorov system (3A) are:  

 0,01 E ,  0,12 E ,  *

3

*

13 , yyE  ;   217

*

1 1 wwy  ;   * * *
3 1 2 1 11 1 /y y w y w    

  The equilibrium points E1 and E2 in the 

31 yy  plane always exist and the linearized 

systems about 1E  and 2E  have a zero eigenvalue. 

These are non-hyperbolic saddle points. 
  For the local stability of system (3A) about

3E , the eigenvalues of the corresponding variational 

matrix should be negative. This gives the stability 
condition as  

        *

122 21 yww   

 2/)2/1(or 2117 ww              (6) 

Further, the system will admit a limit cycle in the 
domain under condition  

        *

122 21 yww   

2/)2/1(or 2117 ww           (7).  

  Similarly for the sub-system (3B) the 

equilibrium points in the 32 yy  plane  0,0  and 

 1,0  are again non-hyperbolic saddle points. 

However the positive nonzero equilibrium point 

)~,~( 324 yyE   is given by 

             
  3272 1~ wwy  , 

  232

5

4
3

~1~1~ ywy
w

w
y   

It is observed that 4E  is locally asymptotically stable 

for the condition  

               233
~21 yww    

2/)2/1(or 3117 ww                      (8) 

The sub system (3B) admits limit cycle whenever  

                 233
~21 yww 

2/)2/1(or 3117 ww          (9) 

The complete system (2) admits following equilibrium 
points: 

 The equilibrium point  0,0,0 is unstable node.  

  The axial equilibrium points  1,0,0 and 

 0,1,0 are found to be non-hyperbolic saddle 

points.  
The stability of planar equilibrium points 

 *

3

*

15 ,0, yyE   and )~,~,0( 326 yyE   is the 

same as that of points 43  and EE respectively, for 

the perturbations given in the respective planes. 
By the Routh-Hurwitz criterion, the local stability 

condition for 5E   and 6E are obtained as 

           

 







5

415*

1

2

2

2

1

w

www
y

w

w

         

(10) 

 3 1 4 5
2

3 5

1
and   respectively.

2

w w w w
y

w w

 
   

                                (11) 
  Further from (10) and (11), it is clear that 

only one of 5E  and 6E  will be stable.  It is now 

concluded that if both the subsystems have stable 
positive equilibrium points then the 3D system may 
admit local stability of only one of the two planar 
equilibrium points and thus one of the two prey 
species will face extinction. 
  The existence of positive equilibrium point is 
established in the following theorem: 
Theorem 4.1  

The system (2) has positive equilibrium point 

under (5) provided one of the following 

is satisfied: 

2

41
5413 )(



ww
www w 

; 

17  w
         

                       (12) 

            
1

5

4152 )(


w
www w 

  
 (13) 

Proof 

 For nonzero equilibrium point, equating the 
three equations to zero and solving them we get, 

)ˆ,ˆ,ˆ( 321 yyy
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          ;/1ˆ ;/1ˆ 52411  wywwy     23121

1

3
ˆˆ1ˆ1

1
ˆ ywywy

w
y   

           
2 32 1 3 1 1 2 4 2 5 7- 0; 0; -1 0w w w w w w w w                   

    

1 4 3 2 5 4 1 3 2 5 2 1 5 4 1 2 1
1 2

4 1 2 4 1 3 1 2 3 5 2 2 2 1
3 2

ˆ ˆ   or  ,  ,  

( ( ( )) ( ( )))
ˆ .

w w w w w w w w w w w w w
y y

w w w w w w w w
y

     

        

   
 

 

      




  (14) 

Since    1ˆ0   , 1ˆ0 21  yy , therefore, the system will have a positive equilibrium point provided           

               1/         and     1/ 541  www   

Thus the system will have a positive solution 
as (14) under conditions 

2

41
5413 )(



ww
www w    (15) 

           

1

5

4152 )(


w
www w   

                                                  (16) 
Now the two cases arise: 
Case 1 

When 0415  www  

It is observed that (15) will be trivially 
satisfied while (16) will be satisfied provided: 

 
1

5

4152 )(


w
www w   

Thus the system has a positive solution 
under condition (16). 

Case 2: when 0541 ww w  

It is observed that (16) will be trivially 
satisfied while (15) will be satisfied provided: 

 
2

41
5413 )(



ww
www w   

Thus the system has a positive nonzero 
solution under condition (15) in this case.  
This proves the theorem.    
 The following theorem gives the conditions 
for the local stability of the nonzero positive 
equilibrium point. 
Theorem 

The positive equilibrium point is locally asymptotically stable provided the following are 

satisfied simultaneously: 

 

1 4 5 3 2 2 3 1 4

2

3 5
3 5 1 1 4 2 1 2 5 3

1 4

 2( ) 2                                               (17a)

( )                               (17b)

w w w w w w w
w

w w
w w w w w w w w

w w

  

  


    

     

  

             53242117 ;01 wwwwww    

Proof. Assume wyyvyyuyy  332211
ˆ,ˆ,ˆ , where , andu v w  small perturbations are about

)ˆ,ˆ,ˆ( 321 yyy . The variational matrix about )ˆ,ˆ,ˆ( 321 yyy is given by 

1 2 1 3 1 3 1 3 1 1
1 2 2

2 1 3 22 1 3 2 2 1 3 2
11 12 13

2 5 2 3 5 3 3 5 2
21 22 23 2 42 2

2 1 3 22 1 3 2 2 1 3 2
31 32 33

1

ˆ ˆ ˆ ˆ ˆ
ˆ

ˆ ˆ(1 )ˆ ˆ ˆ ˆ(1 ) (1 )

ˆ ˆ ˆ ˆ
ˆ ( )

ˆ ˆ(1 )ˆ ˆ ˆ ˆ(1 ) (1 )

w w y y w w y y w y
y

w y w yw y w y w y w y
a a a

w w y y w w y w y
J a a a y w

w y w yw y w y w y w y
a a a

w

  
    

 
 

    
      
  

7 2 6 3 3 2 7 3 6 3 3

2 2
1 2 1 2 3 2 1 2 1 2 3 2

   

ˆ ˆ ˆ ˆ
0

ˆ ˆ ˆ ˆ(1 ) (1 )

w w y y w w w y y

w y w y w y w y



   

 
 
 
 
 
 
 
 

     

 

The characteristic equation of the above variational matrix about )ˆ,ˆ,ˆ( 321 yyy is 

            021

2

0

3  aaa  ;    

            )( 22110 aaa  ; 31132332211222111 aaaaaaaaa  ;      

            3221133123122231133223112 aaaaaaaaaaaaa  . 

)ˆ,ˆ,ˆ( 321 yyy
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It may be observed that a1 and a2 are positive. Using Routh-Hurwitz criterion on the variational matrix J gives the 

stability conditions of the equilibrium point )ˆ,ˆ,ˆ( 321 yyy as  (17a) and 17b 

This completes the proof of the theorem 4.2.        
The following theorem gives the conditions for the global stability of positive nonzero equilibrium point. 

Theorem 4.3 The positive equilibrium point is globally asymptotically stable provided the following are 

satisfied: 

              2 1 3 2 2 2 1 3 2 3
ˆ ˆ ˆ ˆ(1 ) 0; (1 ) 0.A w y w y w B w y w y w           

   
2 2 2 2

3 2 4 44w m w w mw AB  ; 
1 2 5

2 1 3

w w
m

w w




                                                   (18) 

Proof: Consider the small perturbations u, v, w about the positive unique equilibrium point  such that

wyyvyyuyy  332211
ˆ,ˆ,ˆ . Consider positive definite function for arbitrarily chosen nonzero positive 

constants 321 D andD,D :  

 ))
ˆ

1log(ˆ())
ˆ

1log(ˆ())
ˆ

1log(ˆ()(
3

33

2

22

1

11
y

w
ywD

y

v
yvD

y

u
yuDtV   

We have, 

           

]
)1

1[

]
1

)ˆ(
)ˆ1[(]

1

)ˆ(
)ˆ1[(

232121

7

633

2312

35

422

2312

31

11

ywyw

w
wwyD

ywyw

wyw
wvyvD

ywyw

wyw
uyuD

dt

dV

 












 

   ][][][
1

25

2

33236

1

11

2

321362222

l

Dw

l

Dwyw
vw

l

Dw

l

Dwyw
uwuvCvBuA

dt

dV



 

 
2 2 3 11 2 4 2 2 4

1 1 1 1

where ; ; [ ];
w DAD BD w w D w

A B C
l l l l

       

 Substituting 

6 3 1 2 3 1 1 1 2 6 3 2 3 3 1 5 2 2( ) and ( )w y w D l w D l w y w D l w D l  

 and selecting the arbitrary constants as    

1 2 1 2 5 2 1 3; ( ) /D mD m w w w w   , then                                        

  ][ 2222 uvCvBuA
dt

dV
     

        or 

2

2

2
22

2

2 )
4

()
2

( v
A

C
Bv

A

C
uA

dt

dV









 . 

For 0A  and 0B  , the expression for 
dV

dt
is 

negative definite provided 

               
2 2 24A B C   . 

or            
2 2 2 2

3 2 4 4 2 32 (2 )w m w w mw AB w w           

or            
2 2 2 2

3 2 4 44w m w w mw AB                                                                                  

Therefore, the function  V  is a Liapunov 

function  
Thus, the positive nonzero equilibrium point 

is globally asymptotically stable under 

the conditions (18).    
Numerical Simulation 

             For global dynamic behavior, numerical 
simulations of the underlying non-linear system 
are carried out. The numerical values for various 
parameters are selected according to the 
mathematical restrictions (4) obtained from the 
Kolmogorov analysis. In all cases the weak 
condition (6) is satisfied. These ensure that the 
parameters take biologically relevant values only. 
As the solution of the system is bounded, the 
long time behavior of the solution is obtained as  
limit point attractor.  

Numerical results for global analysis with 

respect to 7w  is shown for the following data: 

1 2 3 4 5 6 7 1 23.3, 1.2, 1.3, 1.1, 2.5, 1.0, 1.40, 0.9, 0.3w w w w w w w                        Fig. Phase plot  

 
 
 
 

)ˆ,ˆ,ˆ( 321 yyy

)ˆ,ˆ,ˆ( 321 yyy

)ˆ,ˆ,ˆ( 321 yyy
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(global stable)  

 
In Fig, the trajectories are drawn for the 

following data: 1w =3.3, 2w =1.2, 3w =1.3, 4w =1.1, 5w = 2.5, 6w

=1.0, 7w = 1.7, 1  =1.5, 2  =0.5;                                                                   

Fig. Phase Plot (Locally Stable) 

The system (2) admits a nonzero positive 
equilibrium point, which is stable. 
Conclusion 

             This paper deals with the dynamics of food 
web consisting of two logistic preys and a predator. 
Modified Leslie- Gower type dynamics is considered 
for the predator. The global stability of the food web is 
examined. Numerical integration of the food-web non-
linear system is carried out under the Kolmogorov 
biologically feasible conditions. The stability of food 
web and sub webs is discussed analytically.  
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